Note
Go to the end to download the full example code.
Example for processing field data from Sycal¶
Note
This example is work in progress!!!
import matplotlib.pyplot as plt
import crtomo
import reda.exporters.crtomo as crto
import reda.utils.norrec as NR
import reda
Daten einlesen und berechnen¶
# reda container erstellen
ert = reda.ERT()
# normal und reciproke Daten einlesen
ert.import_syscal_bin('data_nor.bin')
ert.import_syscal_bin('data_rec.bin', reciprocals=48)
# K-Faktor berechnen
K = reda.utils.geometric_factors.compute_K_analytical(ert.data, spacing=2.5)
# Rho_a berechnen
reda.utils.geometric_factors.apply_K(ert.data, K)
# negative Widerstände bei negativen K umdrehen
reda.utils.fix_sign_with_K.fix_sign_with_K(ert.data)
# calculate diffeence between nor and rec measurement
ert.data = NR.assign_norrec_diffs(ert.data, ('r', 'rho_a'))
Histogramme plotten¶
fig = ert.histogram(('r', 'rdiff', 'rho_a', 'rho_adiff', 'Iab'))
plt.savefig('histogramms.png')
plot pseudosection¶
fig = ert.pseudosection('r')
plt.savefig('pseudo_r.png')
fig = ert.pseudosection('rdiff')
plt.savefig('pseudo_rdiff.png')
fig = ert.pseudosection('rho_a')
plt.savefig('pseudo_rhoa.png')
fig = ert.pseudosection('rho_adiff')
plt.savefig('pseudo_rhoadiff.png')
fig = ert.pseudosection('Iab')
plt.savefig('pseudo_I.png')
apply data filters
ert.filter('norrec == "rec"')
ert.filter('r < 0 or r > 1')
ert.filter('rho_a < 0 or rho_a > 60')
ert.filter('rdiff > 0.2 or rdiff < -0.2')
Datenfile in CRTomo Format ausgeben (volt.dat)¶
Arbeiten im Tomodir¶
Gitter und Daten einlesen¶
grid = crtomo.crt_grid.create_surface_grid(
electrodes_x=list(range(30, 174, 3)),
char_lengths=[1.5, 10, 10, 10],
)
td_obj = crtomo.tdMan(grid=grid)
td_obj.read_voltages('volt.dat')
This grid was sorted using CutMcK. The nodes were resorted!
Triangular grid found
Inversionseinstellungen¶
td_obj.crtomo_cfg['robust_inv'] = 'F'
td_obj.crtomo_cfg['dc_inv'] = 'F'
td_obj.crtomo_cfg['cells_z'] = '-1'
td_obj.crtomo_cfg['mag_rel'] = '10'
td_obj.crtomo_cfg['mag_abs'] = '0.5'
td_obj.crtomo_cfg['fpi_inv'] = 'F'
# td_obj.crtomo_cfg['pha_a1'] = '10'
# td_obj.crtomo_cfg['pha_b'] = '-1.5'
# td_obj.crtomo_cfg['pha_rel'] = '10'
# td_obj.crtomo_cfg['pha_abs'] = '0'
invert
td_obj.invert(cores=4)
Attempting inversion in directory: /tmp/tmpdib4rj29
Using binary: /usr/bin/CRTomo_dev
Calling CRTomo
Inversion attempt finished
Attempting to import the results
Reading inversion results
is robust False
Info: res_m.diag not found: /tmp/tmpdib4rj29/inv/res_m.diag
/home/runner/work/crtomo_tools/crtomo_tools/examples/06_field_data_processing
Info: ata.diag not found: /tmp/tmpdib4rj29/inv/ata.diag
/home/runner/work/crtomo_tools/crtomo_tools/examples/06_field_data_processing
Statistics of last iteration:
iteration 1
main_iteration 1
it_type DC/IP
type main
dataRMS 0.1137
magRMS 0.1137
phaRMS NaN
lambda 7739.0
roughness 0.0
cgsteps 194.0
nrdata 624.0
steplength 0.001
stepsize 0.00726
l1ratio NaN
Name: 8, dtype: object
save tomodir
td_obj.save_to_tomodir('td')
Total running time of the script: (0 minutes 19.415 seconds)