Note
Go to the end to download the full example code.
SIP-04 Import¶
Create the SIP container
Import the SIP data
sip.import_sip04('sip_data.mat')
Import SIP04 data from .mat file
Summary:
a b m n
count 22.0 22.0 22.0 22.0
mean 1.0 4.0 2.0 3.0
std 0.0 0.0 0.0 0.0
min 1.0 4.0 2.0 3.0
25% 1.0 4.0 2.0 3.0
50% 1.0 4.0 2.0 3.0
75% 1.0 4.0 2.0 3.0
max 1.0 4.0 2.0 3.0
show the data
<class 'pandas.core.frame.DataFrame'>
a b m n frequency r rpha
0 1 4 2 3 0.01 91710.822743 -29.362558
1 1 4 2 3 0.02 90636.299943 -28.489816
2 1 4 2 3 0.05 89244.733614 -26.907518
3 1 4 2 3 0.10 88216.019214 -26.126560
4 1 4 2 3 0.20 87199.203662 -25.008222
5 1 4 2 3 0.50 85920.509490 -22.469295
6 1 4 2 3 1.00 85104.832528 -19.333149
7 1 4 2 3 2.00 84452.492098 -15.902216
8 1 4 2 3 5.00 83819.335016 -12.312403
9 1 4 2 3 10.00 83432.605700 -10.303340
10 1 4 2 3 20.00 83104.178605 -8.858852
11 1 4 2 3 30.00 82930.728765 -8.257339
12 1 4 2 3 70.00 82606.356388 -7.006607
13 1 4 2 3 130.00 82389.613467 -6.253892
14 1 4 2 3 200.00 82254.030100 -5.743527
15 1 4 2 3 500.00 82000.383966 -4.723193
16 1 4 2 3 1000.00 81852.442931 -3.658800
17 1 4 2 3 2000.00 81744.531873 -2.586255
18 1 4 2 3 5000.00 81779.213925 -1.349227
19 1 4 2 3 10000.00 82085.647708 -3.090301
20 1 4 2 3 20000.00 82641.939514 -13.275897
21 1 4 2 3 45000.00 83175.799742 -45.989948
plot the spectrum
from reda.eis.plots import sip_response
spectrum = sip_response(
frequencies=sip.data['frequency'].values,
rcomplex=sip.data['zt'].values,
)
# note the dtype indicates that no geometric factor was applied to the data
fig = spectrum.plot(filename='spectrum.png', dtype='r', return_fig=True)
save data to ascii file
sip.export_specs_to_ascii('frequencies.dat', 'data.dat')
# optionally:
# install ccd_tools: pip install ccd_tools
# then in the command line, run:
# ccd_single --plot --norm 10