.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_examples/01_ERT/plot_04_pseudosections.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr__examples_01_ERT_plot_04_pseudosections.py: Visualizing ERT measurements using Pseudosections ================================================= Pseudosections are **raw data representations** that aim to visualize a given set of measurements in a spatial context. It is important to remember that no inversion takes place when a pseudosection is plotted, and spatial correlations should be interpreted carefully. [TODO: 2 sentences on the basic assumption of gradually changing values] Set up ------ .. GENERATED FROM PYTHON SOURCE LINES 18-23 .. code-block:: Python import os # import matplotlib.pylab as plt import reda ert = reda.ERT() .. GENERATED FROM PYTHON SOURCE LINES 24-26 In this example output files are saved into subdirectories. In order to not have problems with file paths, we store the original path here .. GENERATED FROM PYTHON SOURCE LINES 26-28 .. code-block:: Python pwd = os.getcwd() .. GENERATED FROM PYTHON SOURCE LINES 29-30 data import: .. GENERATED FROM PYTHON SOURCE LINES 30-47 .. code-block:: Python # note that you should prefer importing the binary data as the text export # sometimes is missing some of the auxiliary data contained in the binary data. ert.import_syscal_txt('data_syscal_ert/data_normal.txt') # the second data set was measured in a reciprocal configuration by switching # the 24-electrode cables on the Syscal Pro input connectors. The parameter # "reciprocals" changes electrode notations. ert.import_syscal_txt( 'data_syscal_ert/data_reciprocal.txt', reciprocals=48 ) # compute geometrical factors using the analytical half-space equation for a # spacing of 0.25 m ert.compute_K_analytical(spacing=0.25) .. rst-class:: sphx-glr-script-out .. code-block:: none array([-18.84955592, -18.84955592, -47.1238898 , ..., -47.1238898 , -18.84955592, -18.84955592]) .. GENERATED FROM PYTHON SOURCE LINES 48-51 Type 1 Pseudo-sections ---------------------- Type 1 pseudo-section should be mainly used for Dipole-Dipole configurations .. GENERATED FROM PYTHON SOURCE LINES 53-56 .. code-block:: Python with reda.CreateEnterDirectory('output_04'): ert.pseudosection_type1( column='r', filename='pseudosection_type1_log10_r.pdf', log10=True) .. image-sg:: /_examples/01_ERT/images/sphx_glr_plot_04_pseudosections_001.png :alt: plot 04 pseudosections :srcset: /_examples/01_ERT/images/sphx_glr_plot_04_pseudosections_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 57-66 Type 2 Pseudo-sections ---------------------- Type 2 pseudo-sections computes pseudo-locations depending on the logical electrode denotations The x-position is computed by averaging over all four a,b,m,n numbers. A heuristic tries to differentiate between Dipole-Dipole configurations and all other configurations and assigns z-positions accordingly: * Dipole-Dipole: 0.195 * abs(b-a) * The rest: max. electrode distance * 0.3 .. GENERATED FROM PYTHON SOURCE LINES 66-71 .. code-block:: Python with reda.CreateEnterDirectory('output_04'): ert.pseudosection_type2( column='r', filename='pseudosection_type2_log10_r.pdf', log10=True) .. image-sg:: /_examples/01_ERT/images/sphx_glr_plot_04_pseudosections_002.png :alt: plot 04 pseudosections :srcset: /_examples/01_ERT/images/sphx_glr_plot_04_pseudosections_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 72-78 Type 3 Pseudo-sections ---------------------- Type 3 pseudo-sections conduct a Finite-Element forward modelling, using a provided mesh, and assigns pseudo-locations to the measurements by computing center of masses for all configurations. To use this type of pseudo-section, a working CRMod installation is required .. GENERATED FROM PYTHON SOURCE LINES 78-94 .. code-block:: Python with reda.CreateEnterDirectory('output_04'): crmod_settings = { # link to file paths of elem.dat/elec.dat, CRTomo-specific mesh format 'elem': pwd + os.sep + 'data_syscal_ert/elem.dat', 'elec': pwd + os.sep + 'data_syscal_ert/elec.dat', 'rho': 100, '2D': False, 'sinke_node': None, } ert.pseudosection_type3( column='r', filename='pseudosection_type3_log10_r.pdf', log10=True, crmod_settings=crmod_settings, ) .. image-sg:: /_examples/01_ERT/images/sphx_glr_plot_04_pseudosections_003.png :alt: plot 04 pseudosections :srcset: /_examples/01_ERT/images/sphx_glr_plot_04_pseudosections_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none This grid was sorted using CutMcK. The nodes were resorted! Rectangular grid found reading sensitivities .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 19.861 seconds) .. _sphx_glr_download__examples_01_ERT_plot_04_pseudosections.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_04_pseudosections.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_04_pseudosections.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_